

17-bit Encoder Specification Conforming to Format A

Harmonic Drive Systems Inc.

Approval	Verification	Planning
Apr-11-'12	Apr-10-'12	Apr-10-'12
T.Yamagishi	T.Maruyama	Y.Katoh

History

REV	Date	Description	Remarks

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	1 OF 29

1. Application

This specification applies to encoders which are installed in SHA actuators and whose communication specification conforms to format A.

2. Outlines

The encoders specified herein are 33-bit multi-revolution absolute encoders, each consisting of absolute positions with a resolution of 17 bits per revolution achieved by a unique magnetic system, and a 16-bit multi-revolution counter backed up by a battery.

3. Basic specifications

3.1 Resolution

	Single-revolution part (ST)	Multi-revolution part (MT)
Resolution	217 (Addresses 0 to +131071)	216 (65536 revolutions)

3. 2 Response speed

(1) Normal operation:	6000r/min
(2) Backup operation:	6000r/min

3. 3 Types of operation modes

Three operation modes are available, as shown in the table below, according to the power-supply voltage.

(1) Separate battery wiring

1 2 0			
Status	Main power voltage	External battery	For internal back-up
	Vcc	Input voltage (TYP)	Capacitor voltage
	(TYP)		(TYP)
Normal operation mode	4.75 to 5.25 V	—	—
Backup operation mode	014	2.9 to 4.0 V	—
	0V	Less than 2.9 V	2.9V or more
Non-operation mode	0V	Less than 2.9 V	Less than 2.9 V

(2) Common battery wiring

		Status	Main power voltage Vcc (TYP)		e Vcc	For internal Capacitor (TYI	voltage
		Normal operation mode	4.75 to 5.25 V				
		Backup operation mode	2.9 to 4.0 V				
			Less than 2.9 V		7	2.9V or	more
		Non-operation mode	Less than 2.9 V		7	Less than	2.9 V
						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	2 OF 29

3.3.1 Normal Operation Mode

In this mode, single-revolution data and multi-revolution data can be counted and data can be sent/received.

If the main circuit is turned on in the non-operation mode, it will take up to 5 seconds until the clock oscillation circuit stabilizes and internal initialization process is completed. The BUSY flag is set during this period. Once the clock stabilizes, data can be sent/received.

When switching from the backup mode to normal operation, data can be sent/received after an elapse of at least 5 seconds.

When switching from the backup mode to normal operation mode (when the power is turned on), the rotational speed must be kept to 300 r/min or below. If the rotational speed of the encoder increases to 300 r/min or above after the main power has been turned on, absolute single-revolution position data cannot be confirmed and thus the BUSY flag is set. Once the rotational speed drops and confirmation of absolute positions becomes possible, the BUSY flag is automatically cancelled at point and absolute position data is confirmed. Note, however, that the BUSY flag is automatically cancelled even when the rotational speed is 300 r/min or above, as long as absolute position data is confirmed.

3.3.2 Back-up status

This is the mode where multi-revolution counting operation is possible due to the external battery power supply or internal backup power supply. In this mode, sending/receiving of data is stopped.

Internal operations are discrete in that the power is supplied to each circuit/cut off repeatedly.

3.3.3 Non-operation mode

This is the mode where all encoder operations are stopped. In this mode, the MT error flag is latched in the encoder. The flag will be sent to an external device once the main power is turned on.

3.3.4 Checking of Alarm Status Flag

WHILE THE BUSY FLAG IS SET, INDICATION OF THE ALARM STATUS FLAG IS INDETERMINABLE.

Check/confirm the alarm status flag while the BUSY flag is cancelled.

3.4 Communication Function

3.4.1 Communication Function by Bus Connection

Up to eight encoders can be connected via a bus. Connect each encoder to the bus by setting a unique encoder address. When a specified command signal is sent to the encoder, the encoder converts specified data to serial signals and sends the converted signals.

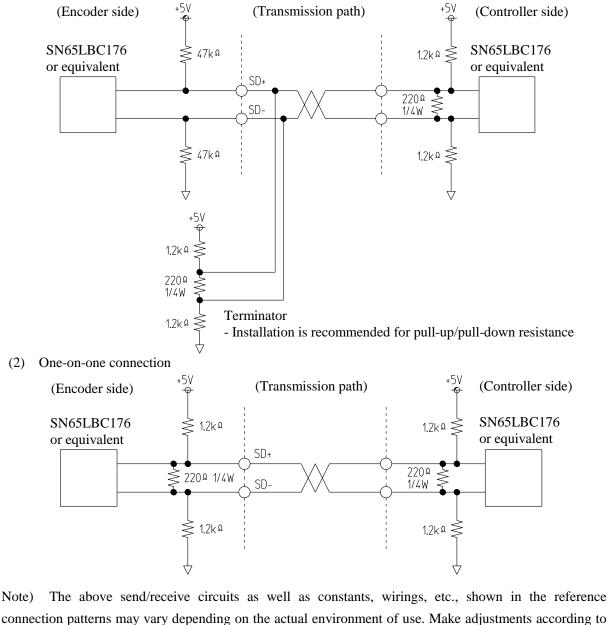
Two modes are available, as explained below, in which the encoder outputs data.

- Individual transmission mode: In this mode, multiple encoders connected to the bus receive a specified command from the controller and then compare their pre-set encoder address against the command signal, after which only those encoders whose encoder address matches the command signal send data.
- Multiple transmission mode: In this mode, multiple encoders connected to the bus receive a specified command from the controller and then send data continuously according to the different communication start timings which are set based on the pre-set encoder addresses.

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	3 OF 29

ENGINEERING

SPECIFICATION


3.4.2 Communication Function by One-on-One Connection

The encoder communicates with the controller one on one. The encoder outputs data in the individual transmission mode. The encoder address of the connected encoder must be specified in the command signal.

Note1. The hardware specification varies between the communication functions by bus connection and one-on-one connection.

3.4.3 Examples of Send/Receive Circuits

(1) Bus connection

the condition.

Also note that depending on the wiring length, the effect of voltage drop may not be unignorable.

						CLASS	SPEC I	NO.	
								B2T04	38
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	4	OF	29

3.5 Communication Speed

The standard communication speed between the encoder rand controller is 2.5 Mbps.

Note) The software specification varies depending on whether the communication speed is 4 Mbps or 2.5 Mbps.

* The communication speed and connection pattern are identified by "10" in the model number shown below.

 $\frac{\text{SHA} \text{ xx} \text{ x} \text{ xxx} \text{ xx} - \text{ x} \text{ xx} \text{ x} \text{ xxx} - \text{ xx} \text{ x} \text{ xxx} \text{ xxx} \text{ x} \text{ x} \text{ xxx} \text{ x} \text{ x} \text{ x} \text{ xxx} \text{ x} \text{ x}$

 $\frac{\text{MA} \text{x} \text{xx} \text{x} \text{x} \text{x} \text{xxx}}{1 6 78 9} - \frac{\text{xx} \text{x} \text{xxx} \text{x}}{10111213} - \frac{\text{xx}}{14} - \frac{\text{xx}}{15}$

10: Communication speed/connection pattern

Indication	Communication	Connection
Indication	speed	pattern
10	2.5 Mbps	One-on-one
10		connection
11	25 Mbro	Bus
	2.5 Mbps	connection
12	1 Mhna	One-on-one
12	4 Mbps	connection
13	1 Mhna	Bus
13	4 Mbps	connection

					\nearrow	CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	5 OF 29

4. Electrical Specifications

4.1 Absolute Maximum Ratings

Item	Symbol	Rated value	Unit
Main power voltage	Vcc	-0.3~6.0	V
External battery voltage	Vbat	-0.3~6.0	V

4. 2 Electrical characteristics

T,			Rated value		TT •
Item	Conditions	MIN	TYP	MAX	Unit
Main power voltage Note 1)	Normal operation (Ripple: 1% or below)	4.75	5.0	5.25	V
External battery input voltage	Backup operation	3.25	3.6	4.0	V
Normal operation <>	Normal -> Backup	4.1	4.2	4.3	V
Backup operation Note 1)	Backup -> Normal	4.14	4.32	4.5	V
MT error voltage generated Note 2)	Backup operation	2.80	2.90	3.00	V
Battery alarm voltage generated Note 2)	External battery voltage	3.05	3.15	3.25	V
Permitted starting time of data send	Backup -> Normal operation After mode switching:			5	S
The power supply impedance is assumed as 0.	Non-operation->Normal operationAfter mode switching:			5	S
Temperature alarm detection	Board temperature	91	95	99	°C
Response speed	Non-operation->NormalBackup -> Normal			300	r/min
	Normal operation			6000	r/min
	Backup operation			6000	r/min
Current consumption during normal operation	When the capacitor has been discharged		155	185	mA
Note 3)	Normal operation		150	180	mA
Battery current consumption during backup Note 4)	Stopped		50	70	μ A
After charging for at least 10 minutes at an ambient temperature of 20° C and Vcc of 5 V	Rotating		320	350	μ Α

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	6 OF 29

ENGINEERING

SPECIFICATION

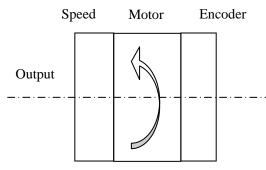
Back-up time Note 5)	After charging for at	0.5		hour
	least 3 hours at Vcc of 5			
	V			

Note 1) Voltage value at the power terminal on encoder side

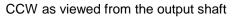
Note 2) Voltage of the internal backup capacitor or that of the external battery, whichever is higher.

Note 3) Current consumption when the serial transmission line is open

Note 4) The battery current consumption during backup is calculated based on the slope of the line of measured changes in internal backup power-supply voltage over time.


Note 5) Value measured with all axes stopped prior to product shipment

4.3 Electrical Specifications Per Revolution


	Item	Specifications	Remarks
Resolution		2 ¹⁷	Addresses 0 to +131071
		ST[19:3]	ST[02:00]=0 (The last 3bit are zero.)
Maximum	Normal operation	6000r/min	
rotation speed			
Output code		Binary	
Increasing direct	ion	CCW	Depending on the rotating direction of
			the motor shaft shown below
Motor shaft accu	racy	$\pm 0.1^{\circ}$	

4. 4 Electrical Specifications over Multiple Revolutions

	L		
	Item	Specifications	Remarks
Resolution		1 count/rotation	
Maximum mu	lti-revolution counter	2^{16}	65,536 rotations
value		MT[15:0]	
Maximum	Normal operation	6000 r/min	
rotation speed	Backup operation	6000 r/min	
Output code		Binary	
Increasing direction		CCW	Depending on the rotating direction of
			the motor shaft shown below

Refer to the actuator specification for the rotating direction of the output shaft.

Note) ST[19:3], MT[15:0], etc., indicate bit ranges [upper bits: lower bits].

						CLASS	SPEC N	0.	
								B2T043	38
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	7	OF	29

4.5 Backup Part

4.5.1 Internal Backup Power Supply (Electrical Double-layer Capacitor)

INC

- (1) Definition of backup time
 - Backup time when no battery is connected. To be specific, the backup time refers to the time after which multi-revolution data can no longer be retained (the encoder switches to the non-operation mode), measured by supplying 5 VDC to Vcc for at least 3 hours so that the encoder can operate and then opening the Vcc terminal.
- (2) Capacitor charge circuit

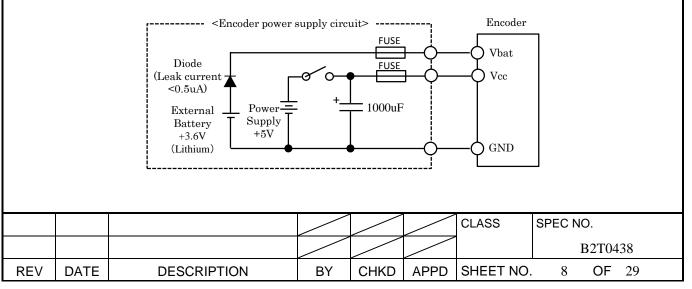
The capacitor is charged from the main power supply (5 VDC) and external battery via a diode/resistor.

- (3) Capacitor life
 - The life of the built-in capacitor changes according to the ambient temperature. Be careful not to expose the encoder to an ambience of high temperature.

Also note that the life of the built-in capacitor also varies depending on the conditions of use.

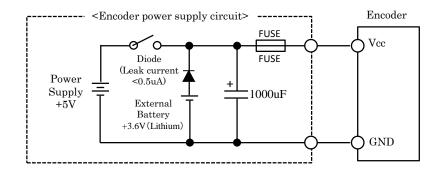
4. 5. 2 External backup power supply (external battery)

(1) Battery whose operation is guaranteed: Lithium battery ER6V (3.6 V) by Toshiba Capacity: 2000 mAh.


We recommend that you set up a battery protection diode with 0.5uA leak current or less to prevent charging to the battery. For reference, the encoder has a leak current characteristic of about 2µA at 25°C and 35µA at 60°C.

(2) Recommended power-supply circuit (reference)

As a failsafe measure in the event of a voltage delay (VD) from the lithium battery, it is recommended to provide an electrolytic capacitor of approx. 1000 μ m in the Vcc (5-V) line on encoder power-supply circuit side.(See the figure below.)


* About VD --- A phenomenon where the voltage drops temporarily when a larger-than-normal current is supplied, due to an impact of film generated on the surface of the negative electrode after the battery has not been used for many hours or has been used at very small current.

Separate battery wiring

Common battery wiring

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	9 OF 29

4.5.3 Switching between Backup Power Supplies

The power is supplied from the main power supply (5 VDC), external backup power supply or internal backup power supply, whichever provides the highest voltage. Note, however, that the switching will not complete unless the voltage difference is equal to or greater than the forward voltage of the diode in the switching circuit.

5. I/O Signal

(1) Separate battery wiring

Connector pin layout

Pin number	Signal name	Function	
1	Vcc	Main power supply +5 V	
2	GND	Signal ground (for Vcc)	ŢJ
3	SD+	Serial data signal	ן [
4	SD-	Serial data signal	J
5	Vbat	Battery power supply	וך
6	GND	Signal ground (for Vbat)	J

Note) Use a twisted paired cable for the output cable.

(Twist a pair of wires for signal SD+ and SD-, Vcc and GND, and Vbat and GND, respectively.)

(2) Common battery wiring

Connector pin layout

Pin number	Signal name	Function
1	Vcc	Common wiring of the main power
		supply of +5 V and battery of +3.6
		V
2	GND	Signal ground
3	SD+	Serial data signal
4	SD-	Serial data signal

Note) Use a twisted paired cable for the output cable.

(Twist a pair of wires for signal SD+ and SD-, and Vcc and GND, respectively.)

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	10 OF 29

Constituted by twisted

Constituted by twisted

6 Functional Explanation of Status Flags

Name	2		Expla	nation		How to cancel
BUSY FL	LAG	Function: A flag t	hat confirms abso	lute single-revolution	on values. Once the	Automatically reset
(BUSY	ľ)	magnetic sensor pos	itions are confirme	d, the flag is reset to	"0."	(When the rotational
		Detection timing: Dur	ing normal operatio	n (while the main po	ower is input)	speed becomes 300
 		Output: Not latched				r/min)
PS ERRO	OR	Function: The multi-	-revolution detectio	n block ([1]) in the	high-speed operation	
(PSERI	R)	part is compared again	nst the multi-revolu	tion detection block	([2]) in the auxiliary	Reconnection of main
		calculation part, and a	n alarm is generated	$\inf [1] \neq [2].$		
		Detection timing: D	uring normal operat	ion		power
 		Output: Latched				
ST ERR	OR	Function: The sing	le-revolution dete	ection block ([1])	in the high-speed	
(STERI	R)	operation part is co	ompared against	the single-revolut	ion detection block	
		([3]) in a separate of	ircuit, and an ala	rm is generated if	the discrepancy is	
		equal to or greater t	han the specified	mechanical angle	A (refer to Note 1).	
		Or, [1] is compared	against the single	e-revolution block	([2]) in the auxiliary	
		calculation part, and	an alarm is gene	erated if the discre	pancy is equal to or	
		greater than the spe	cified mechanical	angle B (refer to N	lote 1).	
		Note1) The specifi				
		model is identified by	Reconnection of main			
		Motor r	nodel	Specified angle	Specified angle	power
		"6"	"7"	A [°]	B [°]	
		В	09	8	12	
		В	12	6.2	12	
		В	15	5.1	12 7.5	
		A	21	3.3	1.5	
		Detection timing: D	aring normal operat	ion		
		Output: Latched				
 Overspe	eed	Output: Latched Function: An alarm is	generated if the ro	tational speed excee	U	Command input
Overspe Alarm		Output: Latched	generated if the ro	tational speed excee	U	Command input (CDF8, CDF10)
 1	IS	Output: Latched Function: An alarm is	generated if the ro	tational speed exceention, an alarm is	U	_
Alarm	IS	Output: Latched Function: An alarm is normal operation. Du rotational speed exceed Detection timing: Dur	generated if the ro ring backup opera ds 6600 r/min (typ).	tational speed excee ation, an alarm is	U	(CDF8, CDF10)
 Alarm	IS	Output: Latched Function: An alarm is normal operation. Du rotational speed excee Detection timing: Dur Output: Latched	generated if the ro ring backup opera ds 6600 r/min (typ). ing normal operatio	tational speed excee tion, an alarm is n/backup operation	also generated if the	(CDF8, CDF10) Reconnection of main
 Alarm	is D)	Output: Latched Function: An alarm is normal operation. Du rotational speed exceed Detection timing: Dur	generated if the ro ring backup opera ds 6600 r/min (typ). ing normal operatio	tational speed excee tion, an alarm is n/backup operation	also generated if the	(CDF8, CDF10) Reconnection of main
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed excee Detection timing: Dur Output: Latched Function: An alarm is	generated if the ro rring backup opera ds 6600 r/min (typ). ing normal operatio generated if the vo	tational speed excee tion, an alarm is n/backup operation	also generated if the	(CDF8, CDF10) Reconnection of main
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed excee Detection timing: Dur Output: Latched Function: An alarm is and that of the ex	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the	(CDF8, CDF10) Reconnection of main power Command input
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed excee Detection timing: Dur Output: Latched Function: An alarm is	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the	(CDF8, CDF10) Reconnection of main power
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed excee Detection timing: Dur Output: Latched Function: An alarm is and that of the ex	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the	(CDF8, CDF10) Reconnection of main power Command input
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed exceet Detection timing: Dur Output: Latched Function: An alarm is and that of the ex Detection timing: Du	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the	(CDF8, CDF10) Reconnection of main power Command input
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed exceet Detection timing: Dur Output: Latched Function: An alarm is and that of the ex Detection timing: Du	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the backup power supply) or below.	(CDF8, CDF10) Reconnection of main power Command input
 Alarma (OVSPI	ls D) larm	Output: Latched Function: An alarm is normal operation. Du rotational speed exceet Detection timing: Dur Output: Latched Function: An alarm is and that of the ex Detection timing: Du	generated if the ro uring backup opera ds 6600 r/min (typ) ing normal operatio generated if the vo ternal battery both o	tational speed exceention, an alarm is n/backup operation ltage of the internal lrop to 3.15 V (TYP	also generated if the backup power supply) or below.	(CDF8, CDF10) Reconnection of main power Command input (CDF8, CDF10)

ENGINEERING

SPECIFICATION

MT ERROR (MTERR)	 Function: An alarm is generated if the encoder switches to the non-operation mode and stops functioning as an encoder. To be specific, an alarm is generated if the voltage of the internal backup power supply or that of the external battery, whichever is higher, drops to 2.9 V (TYP) or below. Detection timing: During backup operation Output: Latched 	Command input (CDF10)
MEMBUSY FLAG (MEMBUSY)	 Function: A flag that indicates that the EEPROM in the encoder is being accessed. Once the access ends, the flag is reset to "0" Detection timing: During normal operation (when data is read or written or encoder address is set) Output: Not latched 	Automatically reset (Cancelled after an elapse of time)
MEM ERROR (MEMERR)	Function: An error is generated upon occurrence of an invalid access to the EEPROM in the encoder.Detection timing: During normal operation (when data is read or written or encoder address is set)Output: Latched	Command input (CDF8, CDF10) Reconnection of main power
Temperature sensor alarm (OVTEMP)	Function: "1" is output if the board temperature in the encoder rises to 95° C (TYP) or above. Detection timing: During normal operation Output: Not latched	Automatically reset (Cancelled once the board temperature drops to 93° C (TYP) or below.)
INC ERROR (INCERR)	No detection functions available	_

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	12 OF 29

7. Serial Communication

7.1 Serial Communication Specification

	Item	Specification	Remarks
Tr	ansmission method	Half-duplex serial communication	CONFORMING TO EIA STANDARD RS-485
]	Fransmission code	NRZ CODING	
Sy	nchronous method	Start-stop	
	Baud rate	2.5 Mbps/4 Mbps	
Command	Number of transferred frames	1 to 4 frames	
Data	Frame structure	18 bits/frame	
	Transmission error check	3-bit CRC code	P(X)=X3+X+1
	Number of transferred frames	1 frame	
	Frame structure	2 to 4 fields/frame	
	Field structure	18 bits/field	
	Transmission error check	8-bit CRC code	P(X)=X8+X4+X3+X2+1
Encoder Data	Position data format	Binary data 40 bits ABS [0:39]	When the resolution per revolution is 17 bits ABS[0:16]=ST[0:16] ABS[17:32]=MT[0:15] ABS [33:39] = "0000000" When the resolution per when the resolution per revolution is 20 bits ABS[0:19]=ST[0:19] ABS[20:35]=MT[0:15] ABS [36:39] = "0000000"

[Outlines]

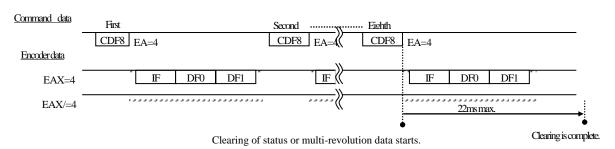
When specified command signals are sent to the encoder, the encoder outputs various data, resets various status and revolution data, sets the encoder address or perform other specified operations depending on the content of each command.Two modes are available, as explained below, in which the encoder outputs data.

Individual transmission mode

In this mode, multiple encoders connected to the bus receive a specified command from the controller and then compare their pre-set encoder address against the command signal, after which only those encoders whose encoder address matches the command signal send data. This mode can be used with the transmission path connection patterns of one-on-one connection and bus connection.

Multiple transmission mode

In this mode, multiple encoders connected to the bus receive a specified command from the controller and then send data continuously according to the different communication start timings which are set based on the pre-set encoder addresses.


This mode can be used with the transmission path connection pattern of bus connection.

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	13 OF 29

			INC	1	ING	INE	ERINC	Ĵ
YSTI	EMS	SYSTEMS			SPEC	CIFI	CATIC)N
	Note) As suppor connec 2 Frame I	explained in 3.4.3, ting one-on-one co tion cannot be used	-	ceive Circui supporting	ts," the com bus connec	munication tion. Accor	· ·	liffers between an encoder ler supporting one-on-one
(1)) Individual	transmission mode	e (Application comr	mands: CD	F0 to CDF3	3, CDF21, 0	CDF27, CDF29))
	Command		EA=2					
	Encoder		EA-2					
	E	AX=2	IF DF0 DF1	DF2				
	E	AX/=2	م Mask sta					
		er encoders whos ders are outputting		ot matching	g are maske	ed and do r	ot accept comm	nands while the matching
(2)) Multiple tra	ansmission mode	(Application com	nand: CDF	4 to CDF7,	, CDF22, C	DF28, CDF30)	
(2)) Multiple tra <u>Command</u> da	<u>ıta</u>	· • • •	nand: CDF	⁷⁴ to CDF7,	, CDF22, C	DF28, CDF30)	
(2)	-	tta CDF5	· • • •	nand: CDF	4 to CDF7,	, CDF22, C	DF28, CDF30)	
(2)	<u>Command</u> da <u>Encoder</u> data	tta CDF5	· • • •	nand: CDF	4 to CDF7,	, CDF22, C	DF28, CDF30)	
(2)	<u>Command</u> da <u>Encoder</u> data	LEA CDF5	EA=5		4 to CDF7,	, CDF22, C 	DF28, CDF30)	
(2)	<u>Command da</u> <u>Encoder data</u> EA	La [CDF5]	EA=5	улллл. - Г	DF0 DF1			
(2)	<u>Command da</u> <u>Encoder data</u> EA EA	Image: CDF5 X=0 X=1 X=5	EA=5	y	DF0 DF1		DF0 DF1	
(2)	Command da Encoder data EA EA EA	Image: CDF5 X=0 X=1 X=5 X=6	EA=5		DF0 DF1		DF0 DF1	
(2,	Command da Encoder data EA EA EA	Image: CDF5 X=0 X=1 X=5 X=6	EA=5		DF0 DF1		DF0 DF1	
(2,	Command da Encoder data EA EA EA EA EA EA EA EA EA EA EA	Image: CDF5 X=0 X=1 X=5 X=6 X=7 en any of CDF4 specified in the c ders that meet the eat the communic Condition: EAX	EA=5	F28 and C pared again output spe differently	DR0 DF1	The second as der address continuous	DF0 DF1 command data (EAX) set for a sly in the order	
(2,	Command da Encoder data EA EA EA EA EA EA EA EA EA EA EA	Image: CDF5 X=0 X=1 X=5 X=6 X=7 en any of CDF4 specified in the c ders that meet the eat the communic Condition: EAX	EA=5 EA=5 to 7, CDF22, CDI ommand data is comp following condition ation start timings set value \leq EA value	F28 and C pared again output spe differently	DR0 DF1	The second as der address continuous	DF0 DF1 f command data (EAX) set for of sly in the order rs.	a, the encoder address each encoder, and those from the smallest EAX
(2,	Command da Encoder data EA EA EA EA EA EA EA EA EA EA EA	Image: CDF5 X=0 X=1 X=5 X=6 X=7 en any of CDF4 specified in the c ders that meet the eat the communic Condition: EAX	EA=5 EA=5 to 7, CDF22, CDI ommand data is comp following condition ation start timings set value \leq EA value	F28 and C pared again output spe differently	DR0 DF1	The second as der address continuous	DF0 DF1 command data (EAX) set for a sly in the order	a, the encoder address each encoder, and those

7.2.2 Clear Request (Application command: CDF8, CDF9, CDF10)

- A clear request is issued in the individual transmission mode or axis stopped mode (250 min-1 or below).
- Send one of commands "CDF8 to 10" eight times consecutively to the encoder. The encoder returns status data in response to the command.
 - Note) If other command is issued during the sending of eight consecutive commands, or the target command was found invalid due to noise, etc., the clear process is not performed. Send the command eight times consecutively.
- The following statuses or multi-revolution data can be cleared using the commands specified below.
 - 1) CDF: Status flag (overspeed, MT error, memory access error)
 - 2) CDF9: Multi-revolution data
 - 3) CDF10: Status flag + Multi-revolution data
- It takes up to 400 µs after the eighth clear request command is received until the target data is actually cleared. Since the original encoder data is retained during this period, issue a new command request after confirming that the target data has been cleared.

Note) If a clear request is issued while a status error is present and the cause of the status error is not yet resolved, the status error will be cancelled once but it will be detected again thereafter.

Internal encoder operations that take place when a clear request command is received while each status error is present are explained below.

Overspeed

- · A clear request command is received at @6600 min-1 or below@
 - The target data is cleared immediately after the eighth clear request command is received (the ALM[3]: OVSPD bit of encoder data changes to "0" upon receiving of the eighth clear request command).
- · A clear request command is received at @6600 min-1 or above@

The target data is cleared immediately after the eighth clear request command is received (the ALM[3]: OVSPD bit of encoder data changes to "0" upon receiving of the eighth clear request command), but an overspeed will be detected within 60 µs at most.

* Note, however, that if an overspeed of a multi-revolution system was detected/is retained because the rotational speed became 10000 min-1 or above, the target data is cleared within 400 μ s at most after receiving of the eighth clear request command.

MT error

The MT error is reset within 400 µs at most after receiving of the eighth clear request command. Thereafter, the MT error will not occur while the main power is on.

Invalid memory access

The memory access error is reset immediately after the eighth clear request command is received. Note, however, that when a memory access error occurs, the encoder may be faulty. If the encoder is faulty, the error will occur again when the memory is accessed the next time.

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	15 OF 29

7.2.3 Encoder Address Setting I(Application command: CDF11)

<u>Command data</u>	First	Second CDF11 FA-3	
<u>Encoder data</u>	CDF11 EA=3	CDF11 EA=3	CDF11 EA=3
EAX=4	² IF DF0 DF1 ²	≤ ™ IF ((IF DF0 DF1
Encoder	Address EAX=4		Address EAX=3
address			Address change

· Connect the controller and encoder one-on-one.

• Enter the specified address in the encoder address field of the command data frame and send the command "CDF11" eight times consecutively to the encoder. The encoder returns status data in response to the command.

Note) The encoder address is set to "EAX = 0" prior to product shipment.

- Once changed, the new encoder address will be retained even after the main power is turned off, regardless of whether an external battery is available or not.
- If serial communication is not established following a specified command, the encoder address is not set correctly. In this case, the encoder address must be set again.
- The MEMBUSY flag is set for up to 30 ms after the eighth command is received until the encoder starts accessing the memory.

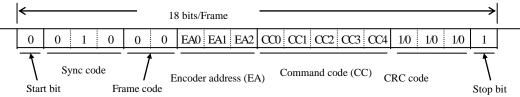
7.2.4 Temperature Data Read (Application command: CDF15)

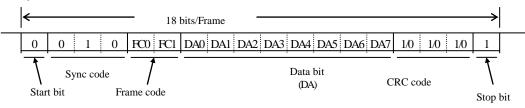
	Command								
	Encodero	CDF15 EA=5							
			B0~DB9···	10bit Tempe	rature Data				
	I	EAX=5 'IF DF0 DI	F1 **						
	E	AX/=5							
	• Whe	perature data is read in the individual transm en "CDF15" is received as command data, th r installed on the encoder board.		ncoder outpu	tts 10-bit info	ormation (DB[9:0]) regarding t	the temp	erature
	,	Temperature data can also be read using the followi Send the command CDF29 (individual transmissio	on) or CDF30 (1	nultiple transn	nission).				
		In this case, position data (lower 24 bits of ABS d	, 1	ut together wit	h temperature	data.			
	• ;	Specify the address F9h and send the command CI Since EEPROM data is not actually read, MEM		at generate and	temperature d	lata can be read with	a single com	mand Al	so note
		that temperature data can be read irrespective of N		•	i temperature e		a single com	mana. 7 u	50 11000
	reta	emperature data is refreshed every second inside the ned in the encoder at the time the command is re-	ceived. Note,	however, that	internal temp	erature data may not	be confirmed	l yet imm	ediately
		the main power is turned on (in which case the obse of at least 2.2 seconds after the main power of at least 2.2 seconds after the main power of the second se			mes 0°C). the	correct temperatu	re data 18 o	utput up	on an
	Cia	se of at least 2.2 seconds after the main po	wer was turn	<i>a</i> on.					
						CLASS	SPEC NO	Э.	
							I	B2T04	38
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	16	OF	29

(1)	Identification	on Code Rea	dI (Ap	pplication com	mand: CDF	516)			
	Command								
			CDF16 EA=	:5					
	<u>Encoder d</u>	<u>ata</u>		F	24-bit ident	ification code	: DZX[23:0]		
	E	AX=5	1	F DF0 DI	F1 77				
	E	AX/=5							
				6) is performed ommand data, th				d identification co	de (DZX[23:0]).
(2)	Identification	on Code Rea	dII (Ap	pplication com	mand: CDF	517)			
	Command		CDF17						
	Encoderd	•			24 hit identi	figation and a	D7V[22:0]		
		AX=n	1 r	F DF0 DI		fication code:	DZX[23:0]		
(1)	Identification	CDF18 EA=1	te I (Ap Identific MDF0 24-b	pplication com cation code write I <u>MDF1</u> it identification c	MDF2			12	
(1)	Identification	ta <u>CDF18</u> EA=1	te I (Ap Identific MDF0 24-b	cation code write I	MDF2 ode	IF DF]×.	
(1)	Identification	ta $CDF18$ =1 $EA=1$	te I (Ap Identific MDF0 24-b	cation code write I MDF1 it identification c	MDF2 ode	IF DF	0 DF1 		
(1)	Identification Command da Encoder data EAX=	ta $CODF18$ EA=1 =1	te I (Ap Identific MDF0 24-b	cation code write I	MDF2 ode	IF DF		ax)	→ MEMBUSY=0
(1)	Identification <u>Command da</u> <u>Encoder data</u> EAX:	ta $CODF18$ EA=1 =1	te I (Ap klentifix MDF0 24-b ← 10	cation code write I <u>MDF1</u> it identification c μ s(Min) ISY=0	MDF2 ode	IF DF	30ms(Ma	IX)	MEMBUSY=0
(1)	Identification <u>Command da</u> <u>Encoderdata</u> EAX: EAX: EAX: EAX: EAX: EAX: Command da EAX: EAX	tification code specified encod MEMBUSY f e data could no le the MEMBU	te I (Ap kentifix MDF0 24-b 24-b 4- 10 MEMBU write I (CDF ode write con 24 identification identification lag is set for 3 t be written con JSY or MEM	cation code write I <u>MDF1</u> <u>it identification c</u> μ s (Min) ISY=0 V 18) is performed mmand consists on code bits (LS	MDF2 ode WRITE motion state of a total of from the individual of a total of from the state of the state o	IF DF Mart dual transmiss iour frames ir three memor d the identific eration is star s latched insidess command	30ms (Ma /IEMBUSY=10 //IEMBUSY=	WRITE) WRITE) WRI command data fr s. pecified by the con er. d.	TE motion finish
(1)	Identification <u>Command da</u> <u>Encoderdata</u> EAX: EAX: EAX: EAX: EAX: EAX: Command da EAX: EAX	tification code specified encod MEMBUSY f e data could no le the MEMBU	te I (Ap kentifix MDF0 24-b 24-b 4- 10 MEMBU write I (CDF ode write con 24 identification identification lag is set for 3 t be written con JSY or MEM	cation code write I MDF1 it identification c μ s (Min) ISY=0 V 18) is performed mmand consists on code bits (LS) e retained encode 30 ms (max) afte orrectly, the ME // ERR flag is set, // ERR flag is set,	MDF2 ode WRITE motion state of a total of from the individual of a total of from the state of the state o	IF DF Mart dual transmiss iour frames ir three memor d the identific eration is star s latched insidess command	30ms (Ma /IEMBUSY=10 //IEMBUSY=	IX) WRITE) WRITE) WRI command data frast s. pecified by the contert d. (s. ''))	ITE motion finish rame and three memory data mmand.
(1)	Identification <u>Command da</u> <u>Encoderdata</u> EAX: EAX: EAX: EAX: EAX: EAX: Command da EAX: EAX	tification code specified encod MEMBUSY f e data could no le the MEMBU	te I (Ap kentifix MDF0 24-b 24-b 4- 10 MEMBU write I (CDF ode write con 24 identification identification lag is set for 3 t be written con JSY or MEM	cation code write I MDF1 it identification c μ s (Min) ISY=0 V 18) is performed mmand consists on code bits (LS) e retained encode 30 ms (max) afte orrectly, the ME // ERR flag is set, // ERR flag is set,	MDF2 ode WRITE motion state of a total of from the individual of a total of from t	IF DF Mart dual transmiss iour frames ir three memor d the identific eration is star s latched insidess command	30ms (Ma /IEMBUSY=10 //IEMBUSY=	WRITE) WRITE) WRI command data fr s. pecified by the con er. d.	TE motion finish

(2) Identification (Code Write II (Application	command: CDF19)	
Command data	Identification code write II	х.	
<u>Encoder data</u> EAX=n	CDF19 MDF0 MDF1 MDF2 24-bit identification code \rightarrow \leftarrow 1 0 μ s (Min)	IF DRO DF1 *	
EEPROM status	MEMBUSY=0	← 30 ms (Max) MEMBUSY=1(WRITE)	→ MEMBUSY=0
	WRITEmo	ion start WRI	• TE motion finish
The identification frames. SpAfter res	identification code read II (CDF19) based on one utification code write command consists of a total pecify the 24 identification code bits (LSB first) ir ceiving the command, the encoder returns the	of four frames including one command data fra n the three memory data frames.	-
	MBUSY flag is set for 30 ms (max) after the writ	1	
 If the dat 	ta could not be written correctly, the MEMERR f	ag is faiched inside the encoder.	

- While the MEMBUSY or MEMERR flag is set, memory access commands are ignored. (For the MEMBUSY and MEMERR, refer to 6, "Functional Explanation of Status Flags."))
- 7.2.7 Encoder Address Setting II (Application command: CDF20)


	Command	data	Fncode address setting IL						
	Encoderda	EA=3	MDF0 MDF1 24-bit identification	MDF2 code					
	EAX= DZX[23:0]=0		← 10µs(Min)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∎F]	DF0 DF1			
		Encoder	Address EAX = 1	-	Ad	dress EAX=3			
	FAX=r	address		,					
	DZX[23:0]/=0	-							
				I					
	 You The the 24 The the residuence of the residuence of the field of t	can set the encoder setting command or identification code encoder matching the tained identification MEMBUSY flag is e data could not be we be the MEMBUSY	s setting II in the individu address by specifying a d onsists of a total of four f bits (LSB first) in the thr he identification code spe- code. a set for 30 ms (max) after written correctly, the MEN or MEMERR flag is set, d MEMERR, refer to 6, '	esired encoor irames inclu are memory or writed by the the write op MERR flag is memory acc	der identificat ding one con data frames. e command r peration is sta is latched insi cess comman	nmand data f eturns the en rted. de the encod ds are ignore	coder address spe er. d. ys.")	cified by the co	ommand and
				\square		\angle	CLASS	SPEC NO.	
				\square		\bigcirc		B 2	2T0438
REV	DATE	DESC	RIPTION	BY	CHKD	APPD	SHEET NO.	18	OF 29


7.3 Command Data Specification

7.3.1 Frame Structure

(1) Command data frame (CDF)

(2) Memory data frame (MDF)

7.3.2 Frame details

(1) Command data frame

Frame name	Fram	e code	Command code		Category			Ra	marks		
	FC0	FC1	CC [4:0]		Lategory			Ke	marks		
CDF0			00000	Data request			Absol	ute full 40-bit data re	quest		
CDF1	0	0	00001	(individual		Absol	ute lower 24-bit data	request			
CDF2	0	0	00010	· · ·	transmission)		Absol	ute upper 24-bit data	request		
CDF3			00011	truit	5111551011)		Enco	ler status request			
CDF4			00100	Dot	a request		Absol	ute full 40-bit data re	quest		
CDF5	0	0	00101		nultiple		Absol	ute lower 24-bit data	request		
CDF6	0	0	00110		smission)		Absol	ute upper 24-bit data	request		
CDF7			00111	uana	5111551011)		Enco	ler status request			
CDF8			01000	Tool	k request		Status	s flag clear request			
CDF9	0	0	01001		dividual		Multi	-revolution data clear	request		
CDF10	0	0	01010	``````````````````````````````````````	smission)		Status	s + multi-revolution d	lata clear requ	est	
CDF11			01011	uana	5111551011)		Enco	ler address setting I (one-on-one co	onnection)
CDF15	0	0	01111		uest (individua 1smission)	ป	Temp	erature data (10-bit)	request		
CDF16	0	0	10000	Identific	ation code read	1	Identi	fication code read I			
CDF17	0	0	10001	(individu	al transmissior	1)	Identi	fication code read II (one-on-one co	onnectior	1)
CDF18	0	0	10010	Identifica	ation code writ	e	Identi	fication code write I			
CDF19	0	0	10011	(individu	al transmissior	1)	Identi	fication code read II (one-on-one co	onnectior	1)
CDF20	0	0	10100		uest (individua nsmission)	ત્રી	Encode address setting II				
CDF21	0	0	10101		uest (individua 1smission)	ป	Absolute lower 17-bit data request				
CDF22	0	0	10110		quest (multiple 1smission)		Absol	ute lower 17-bit data	request		
CDF27	0	0	11011		uest (individua 1smission)	ıl	ABS	S lower 24-bit	+ status re	equest	
CDF28	0	0	11100		quest (multiple 1smission)		ABS	S lower 24-bit	+ status re	equest	
CDF29	0	0	11101		uest (individua 1smission)	ป	ABS requ	S lower 24-bi iest	t + temp	erature	e da
								CLASS	SPEC N	0.	
							\geq]	B2T04	138
DATE	D	ESCRIF		BY	CHKD	AF	PD	SHEET NO.	19	OF	29
					1	1					

ENGINEERING

SPECIFICATION

CDF30	0	0	11110	Data request (multiple transmission)	ABS lower 24-bit + temperature data request
Other than above	Not define	d or cannot b	be used		

(2) Memory data frame

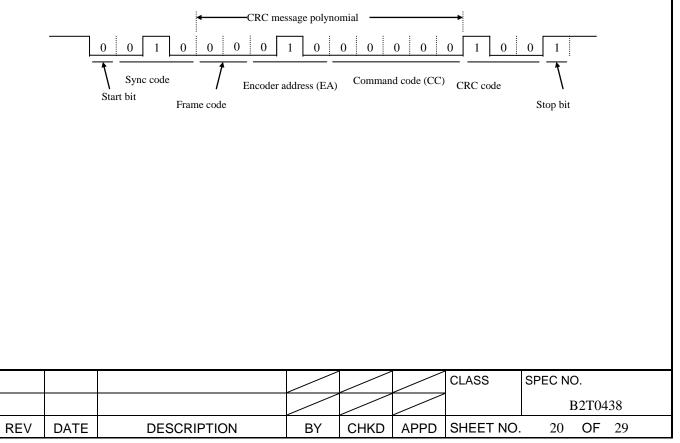
• Memory access: CDF13, CDF14

Frame	Frame code		A	
name	FC0	FC1	Assignment to data bits	Remarks
MDF0	1	0	DA [0:7] = MEMDAT [0:7]	Lower 8 bits of EEPROM data
MDF1	0	1	DA [0:7] = MEMDAT [8:15]	Upper 8 bits of EEPROM data
MDF2	1	1	DA [0:7] = MEMADR [0:7]	8 bits of EEPROM address (Note)

Note) In the case of CDF13 (read), addresses from 00h to FFh are accessible. If the specified address is F9h, however, CDF13 functions as a temperature data read command instead of a memory access command.

Note) In the case of CDF14 (write), addresses from 00h to EFh are accessible. If the specified address is between F0h and FFh, no response is received from the encoder. (These addresses cannot be written because they are reserved by the encoder system.)

· Identification code write: CDF18, 19


Frame	Frame	e code		Damada	
name	FC0	FC1	Assignment to data bits	Remarks	
MDF0	1	0	DA[0:7] = DZ[0:7]	Identification code bits 0 to 7	
MDF1	0	1	DA [0:7] = DZ [8:15]	Identification code bits 8 to 15	
MDF2	1	1	DA [0:7] = DZ [16:23]	Identification code bits 16 to 23	

(3) CRC code

- CRC code generation polynomial: P(x) = X3 + X + 1
- The CRC calculation range covers all bits except for the start bit, stop bit and sync code.

Example) Command "CDF0"

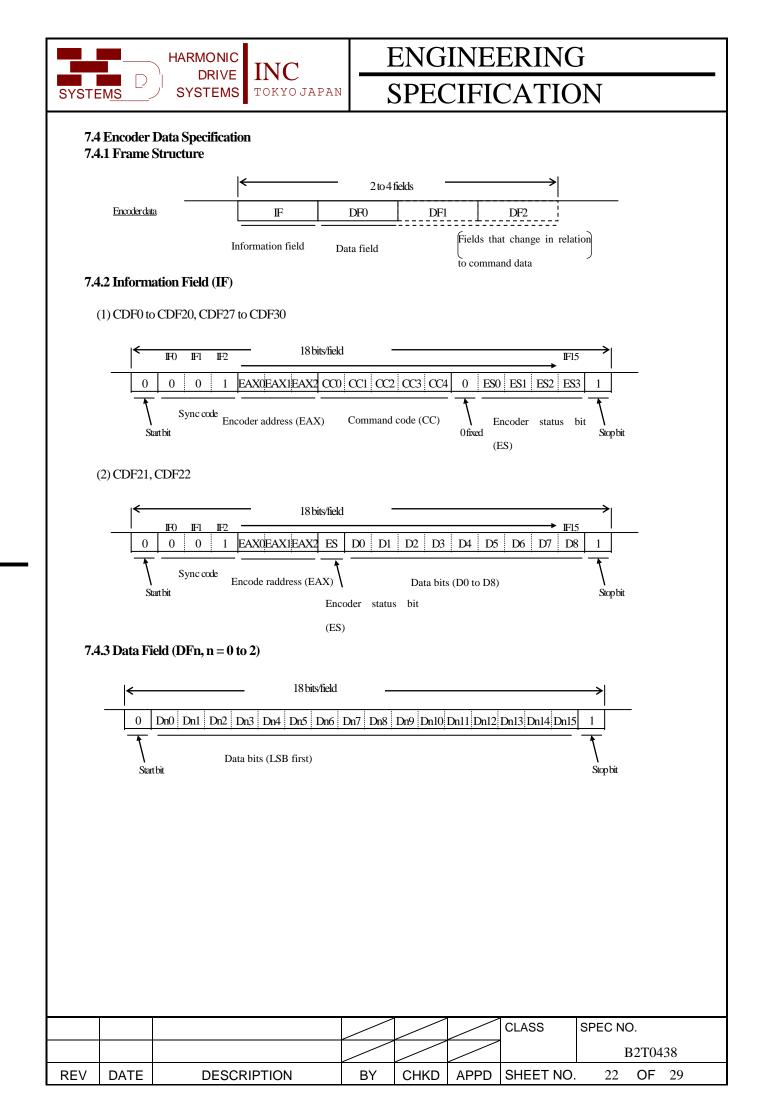
(full data request for encoder category ENC3 based on bus connection/individual mode)

(4) Encoder address (EA) --- Specified address

[One-on-one connection]

Align the encoder address (EA) with the address (EAX) set for the encoder. Note, however, that the factory setting is EAX = ``000" (ENC1). The specified encoder address can be changed using the command "CDF11."

[Bus connection]


· Individual transmission mode --- For the encoder address (EA), specify the address of one of the encoders connected to the bus.

INC

· Multiple transmission mode --- For the encoder address (EA), specify the largest encoder address (EAX) among all encoders connected to the bus (when requesting data from all encoders).

Encoder add	dress (EA)	Encodor ostagon	
EA0	EA1	EA2	Encoder category
0	0	0	ENC1
1	0	0	ENC2
0	1	0	ENC3
1	1	0	ENC4
0	0	1	ENC5
1	0	1	ENC6
0	1	1	ENC7
1	1	1	ENC8

						CLASS	SPEC NO.	
							B2T043	38
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	21 OF	29

7.4.4 Data Assignment

Command		Encoder data	a/field structure		Data
Data	IF	DF0	DF1	DF2	Send time
CDF0 CDF4		D0[0:15]=ABS[0:15]	D1[0:15]=ABS[16:31]	D2[0:7]=ABS[32:39] D2[8:15]=CRC[0:7]	28.8μs (18μs)
CDF1 CDF5		D0[0:15]=ABS[0:15]	D1[0:7]=ABS[16:23] D1[8:15]=CRC[0:7]		21.6μs (13.5μs)
CDF2 CDF6		D0[0:15]=ABS[16:31]	D1[0:7]=ABS[32:39] D1[8:15]=CRC[0:7]		21.6μs (13.5μs)
CDF3 CDF7	IF [0:2] = "001" (Sync code)	D0[0:15]=ALM[0:15]	D1[0:7]="00000000" D1[8:15]=CRC[0:7]		21.6μs (13.5μs)
CDF8 CDF9	IF[3:5]=EAX[0:2]	D0[0:15]=ALM[0:15]	D1[0:7]="00000000" D1[8:15]=CRC[0:7]		21.6µs
CDF10 CDF11	(encoder address)	Note 1)	Note 1)		(13.5µs)
CDF15	IF[6:10]=CC[0:4] : (Command code)	D0[0:9]=DB[0:9] D0[10:15]="000000"	D1[0:7]="00000000" D1[8:15]=CRC[0:7]		21.6µs (13.5µs)
CDF16 CDF17	IF [11] = '0'	D0[0:15]=DZX[0:15]	D1[0:7]=DZX[16:23] D1[8:15]=CRC[0:7]		21.6µs (13.5µs)
CDF18 CDF19	IF[12:15]=ES[0:3]:	D0[0:15]=DZ[0:15]	D1[0:7]=DZ[16:23] D1[8:15]=CRC[0:7]		21.6µs (13.5µs)
CDF20	(StatusBit)	D0[0:15]=DZX[0:15]	D1[0:7]=DZX[16:23] D1[8:15]=CRC[0:7]		21.6µs (13.5µs)
CDF27 CDF28		D0[0:15]=ABS[0:15]	D1[0:7]=ABS[16:23] D1[8:15]=ALM[0:7]	D2[0:7]=ALM[8:15] D2[8:15]=CRC[0:7]	28.8µs (18µs)
CDF29 CDF30		D0[0:15]=ABS[0:15]	D1[0:7]=ABS[16:23] D1[8:15]=DB[0:7]	D2[0:1]=DB[8:9] D2[2:7]="000000" D2[8:15]=CRC[0:7]	28.8μs (18μs)
CDF21 CDF22	IF [0:2] = "001" IF[3:5]=EAX[0:2] IF[6]=ES IF[7:15]=ABS[0:8]	D1[0:7]=ABS[9:16] D1[8:15]=CRC[0:7]			14.4 μs (9 μs)

Note 1) Optionally, the assignments of encoder data for commands CDF8 to CDF12 can be changed to the ABS lower 24-bit output pattern as with CDF1. Note 2) Commands other than those specified above are not supported by encoders, as a rule. Do not send these commands to encoders.

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	23 OF 29

(1) The IF/sync code is fixed to "001."

(2) IF/encoder address (EAX) --- Address set for the encoder

Encoder add	Encoder address (EAX)					
EAX0	EAX1	EAX2	Category			
0	0	0	ENC1			
1	0	0	ENC2			
0	1	0	ENC3			
1	1	0	ENC4			
0	0	1	ENC5			
1	0	1	ENC6			
0	1	1	ENC7			
1	1	1	ENC8			

(3) The IF/command code is identical to the command code specified by the command data. (Refer to the table in 1.3.2 (1).)

(4) IF/encoder status bit

Bit	Status flag	Remarks
ES0	BUSY+MEMBUSY	Logical sum output
ES1	BATT	
ES2	OVSPD+MEMERR+OVTEMP	Logical sum output
ES3	STERR+PSERR+MTERR	Logical sum output
ES	ES0+ES1+ES2+ES3	Logical sum output (CDF21, 22)

Note) For details on status flags, refer to 6, "Functional Explanation of Status Flags.

(5) DF/ALM [0:15]

• The table below summarizes status assignments for the status code ALM[0:15].

Bit	ALM[0]	ALM[1]	ALM[2]	ALM[3]	ALM[4]	ALM[5]	ALM[6]	ALM[7]
Status	BATT	MTERR	0 fixed	OVSPD	MEMERR	STERR	PSERR	BUSY
Bit	ALM[8]	ALM[9]	ALM[10	ALM[11	ALM[12]	ALM[13	ALM[14	ALM[15
DIL	ALW[0]	ALIVI[9]]]	ALW[12]]]]
Status	MEMBUSY	OVTEMP	0 fixed					

Note) For details on status flags, refer to 6, "Functional Explanation of Status Flags.

(6) DF/CRC [0:7]

- The last field in the encoder data frame contains the CRC code (8 bits).
- CRC code generation polynomial: P(x) = X8 + X4 + X3 + X2 + 1
- The CRC calculation range covers all bits except for the start bit and stop bit in each field.
- CRC calculation example (when the frame consists of three fields)

IF	DF0	DF1
00111110 00000011	00000000 11101111	11011111 <u>00110101</u>

(7) DF/MEMADR [0:7], MEMDAT [0:15]

- MEMADR [0:7] : 8 bits of EEPROM address (LSB first)

- MEMDAT [0:15]: 16 bits of EEPROM data (LSB first) when reading data

16 bits of user data (LSB first) when writing data

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	24 OF 29

(8) DF/DB [0:9] 10 bits of

temperature data: Dl	B[9:0] format
Temperature	Digital Output DB[9:0]
-128 °C	10 0000 0000
-50 °C	11 0011 1000
-20 °C	11 1011 0000
-0.25 °C	11 1111 1111
0 °C	00 0000 0000
+0.25 °C	00 0000 0001
+10 °C	00 0010 1000
+25 °C	00 0110 0100
+50 °C	00 1100 1000
+85 °C	01 0101 0100
+127 °C	01 1111 1100

(9) DF/DZ [0;23], DZX [0:23]

- DZ [0:23]: 24 bits of command-specified identification code (LSB first)

- DZX [0:23]: 24 bits of encoder-retained identification code (LSB first)

(10) DF/ABS [0:39] 17-bit resolution per revolution

• ABS[0:16] = ST[0:16] --- 17 bits of single-revolution data

- ABS[17:32] = MT[0:15] --- 16 bits of multi-revolution data
- ABS[33:39] = "0000000" --- Fixed to 0

20-bit resolution per revolution

- ABS[0:19] = ST[0:19] -- 20 bits of single-revolution data
- ABS[20:35] = MT[0:15] --- 16 bits of multi-revolution data
- ABS[36:39] = "0000" --- Fixed to 0

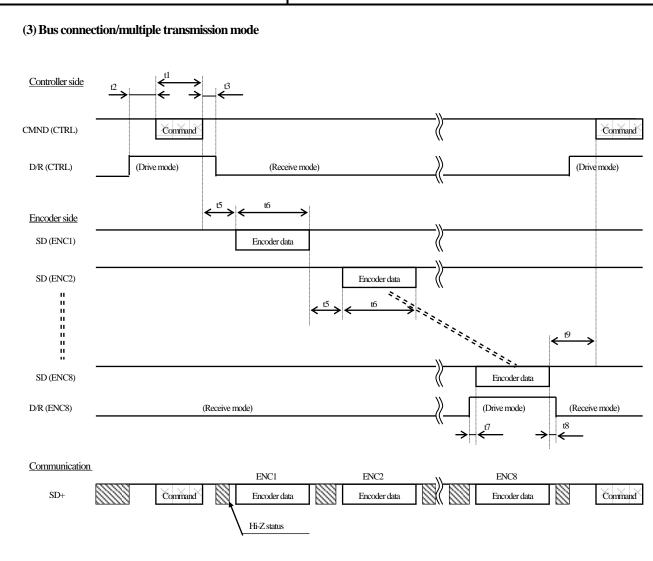
						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	25 OF 29

7.5 Send/Receive Timings 7.5.1 Timing Chart (1) One-on-one connection 2 frame command (memory data read command) Controller side ť2 ~ CMND (CTRL) Command Command Command D/R (CTRL) (Drive mode) (Receive mode) (Drive mode) (Receive mode) <[₺] t5 t6 Encoder side SD (ENC) Encoder data Encoder data D/R (ENC) (Receive mode) (Drive mode) (Receive mode) (Drive mode) Communication SD+ Command Command Command Encoder data Encoder data Hi-Z status Transmission rate Transmission rate Time Remarks Time Remarks 2.5 Mbps 2.5 Mbps 4 Mbps 4 Mbps t1 $7.2\,\mu s$ 4.5 µs 28.8 µs 18 µs Note 1 t6 21.5 µs 13.5 µs Note 2 t2 1 µs (MIN) 0.8 µs (MIN) 14.4 µs 9 µs Note 3 t3 1.5 µs (MAX) 1 µs (MAX) ť7 200 ns $50\,\mathrm{ns}$ t4 t8 10 µs (MIN) 7 μs (MIN) 150 ns 200 ns t5 3 μs 2 µs t9 5 µs (MIN) 5 µs (MIN) Note) The timing specifications conform to 3.4.3, "Examples of Send/Receive Circuits." Take note that transmission path delays and transmission delays in send/receive circuits are assumed as "0." Note 1) Commands CDF0, CDF27, CDF29 (four-field data) Note 2) Commands CDF1 to 3, CDF8 to 19 (three-field data) Note 3) Command CDF21 (two-field data) CLASS SPEC NO

						OLA00	SI LO NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	26 OF 29

(2) Bus connection/individual transmission mode Two-frame command (memory data read command) Controller side ß ť2 t4 ↔ ~ CMND (CTRL) Command Command Command D/R (CTRL) (Drive mode) (Receive mode) (Drive mode) (Receive mode) < ¹⁵ t6 t5 ť9 Encoder side SD (ENC) Encoder data Encoder data D/R (ENC) (Drive mode) (Drive mode) (Receive mode) (Receive mode) Communication SD+ Command Encoder data Command Command Encoder data

T.'	Transmission rate		D 1	T.	Transmiss		
Time	Time 2.5 Mbps 4 Mbps Ren	Remarks	Time	2.5 Mbps	4 Mbps	Remarks	
t1	7.2 µs	4.5 µs			28.8 µs	18 µs	Note 1
10	7.5 μs (MIN)	5 µs (MIN)		t6	21.6 µs	13.5 µs	Note 2
t2					14.4 µs	9 µs	Note 3
t3	1.5 µs (MAX)	1 µs (MAX)		t7	200 ns	50 ns	
t4	10 µs (MIN)	7 µs (MIN)		t8	200 ns	150 ns	
t5	3 µs	2 µs		t9	10 µs (MIN)	7 μs (MIN)	


Note) The timing specifications conform to 3.4.3, "Examples of Send/Receive Circuits." Take note that transmission path delays and transmission delays in send/receive circuits are assumed as "0." Note 1) Commands CDF0, CDF27, CDF29 (four-field data)

Note 2) Commands CDF1 to 3, CDF8 to 20 (three-field data)

Note 3) Command CDF21 (two-field data)

					\bigcirc	CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	27 OF 29

Т	Transm	ission rate	Dementer	T :	Transmiss	ion rate	Remarks
Time	2.5 Mbps	4 Mbps	Remarks	Time	2.5 Mbps	4 Mbps	
t1	7.2 µs	4.5 µs			28.8 µs	18 µs	Note 1
-0	7.5 μs (MIN)	5 µs (MIN)		t6	21.6 µs	13.5 µs	Note 2
t2					14.4 µs	9 µs	Note 3
t3	1.5 µs (MAX)	1 µs (MAX)		t7	200 ns	50 ns	
t4				t8	200 ns	150 ns	
t5	3 µs	2 µs		t9	10 µs (MIN)	7 μs (MIN)	

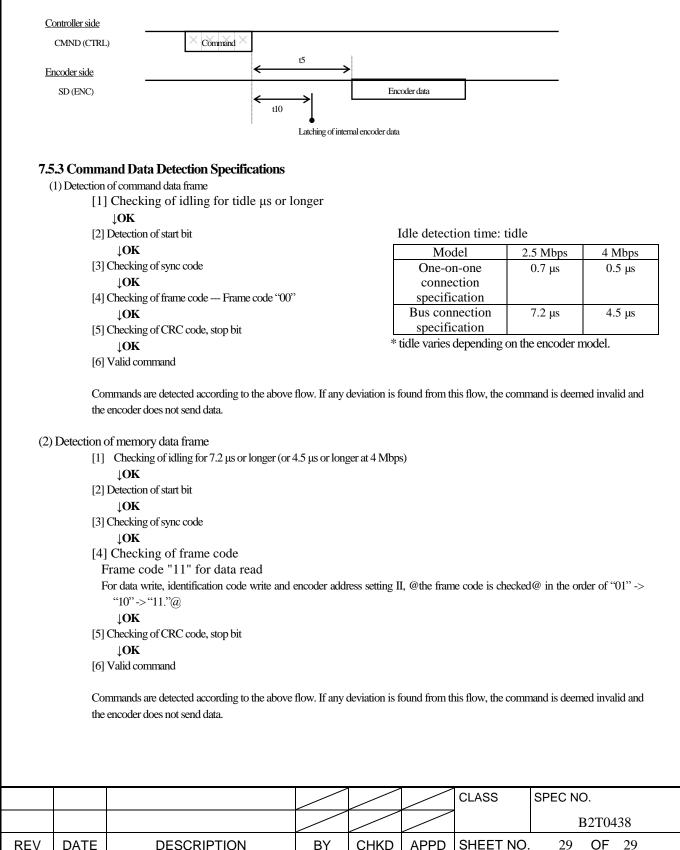
Note) The timing specifications conform to 3.4.3, "Examples of Send/Receive Circuits." Take note that transmission path delays and transmission delays in send/receive circuits are assumed as "0."

Note 1) Commands CDF4, CDF28, CDF30 (four-field data)

Note 2) Commands CDF5 to 7 (three-field data)

Note 3) Command CDF22 (two-field data)

						CLASS	SPEC NO.
							B2T0438
REV	DATE	DESCRIPTION	BY	CHKD	APPD	SHEET NO.	28 OF 29


ENGINEERING

SPECIFICATION

7.5.2 Latch Timing of Internal Encoder Data (t10)

Internal data is latched within 2 μ s \pm 0.5 μ s (at 2.5 Mbps) (or 1.5 μ s \pm 0.5 μ s at 4 Mbps) after a command is detected (= its frames end).

With the command "CDF2" or "CDF6," however, internal data is not latched and the last latched data is output.

